Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your class section number (see below), last name, first name, middle initial, and student identification number. Leave the test form number blank.

Section 001 (MWF 8am with Dr. Nafshun)
Section 003 (MWF 11am with Dr. Watson)
Section 005 (MWF 2pm with Dr. Grajczyk)

Section 002 (MWF 9am with Dr. Nafshun) Section 004 (MWF 1pm with Dr. Burrows)

This exam consists of 32 multiple-choice questions; each has 5 points attached. When you finish this exam, proceed to the proctor. Show your OSU ID Card and submit your completed Scantron form. You may take your notecard and this exam packet with you.

$\begin{aligned} & \mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right]=1.80 \times 10^{-5} \\ & \text { (acetic acid) } \end{aligned}$	$\begin{array}{\|l} \hline \begin{array}{l} \mathrm{K}_{\mathrm{a}}\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})\right]=6.30 \times 10^{-5} \\ \text { (benzoic acid) } \end{array} \\ \hline \end{array}$
$\begin{aligned} & \mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_{2} \mathrm{ClCOOH}(\mathrm{aq})\right]=1.40 \times 10^{-3} \\ & \text { (chloroacetic acid) } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \mathrm{K}_{\mathrm{b}}\left[\mathrm{NH}_{3}(\mathrm{aq})\right]=1.80 \times 10^{-5} \\ (\text { ammonia }) \end{array} \end{aligned}$
$\begin{aligned} & \mathrm{K}_{\mathrm{a}}[\mathrm{HClO}(\mathrm{aq})]=2.90 \times 10^{-8} \\ & \text { (hypochlorous acid) } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})\right]=1.45 \times 10^{-5} \\ \text { (pentanoic acid) } \end{array} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{K}_{\mathrm{a}}[\mathrm{HF}(\mathrm{aq})]=6.30 \times 10^{-4} \\ & \text { (hydrofluoric acid) } \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{K}_{\mathrm{b}}\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]=3.70 \times 10^{-4} \\ \text { (methylamine) } \end{array}$
$\begin{aligned} & \mathrm{K}_{\mathrm{a}}[\mathrm{HCOOH}(\mathrm{aq})]=1.80 \times 10^{-4} \\ & \text { (formic acid) } \end{aligned}$	$\mathrm{K}_{\text {sp }}\left[\mathrm{Fe}(\mathrm{OH})_{2}\right]=4.87 \times 10^{-17}$
$\mathrm{K}_{\text {sp }}\left[\mathrm{PbF}_{2}\right]=3.6 \times 10^{-8}$	$\mathrm{K}_{\text {sp }}\left[\mathrm{MgF}_{2}\right]=3.7 \times 10^{-8}$
$\mathrm{K}_{\text {sp }}\left[\mathrm{Cd}(\mathrm{OH})_{2}\right]=7.2 \times 10^{-15}$	$\mathrm{K}_{\text {sp }}\left[\mathrm{PbI}_{2}\right]=1.4 \times 10^{-8}$
$\mathrm{K}_{\text {sp }}\left[\mathrm{CaSO}_{4}\right]=2.4 \times 10^{-5}$	$\mathrm{K}_{\text {sp }}\left[\mathrm{CaC}_{2} \mathrm{O}_{4}\right]=2.3 \times 10^{-9}$
$\mathrm{K}_{\text {sp }}[\mathrm{CuCl}]=1.0 \times 10^{-6}$	$\mathrm{K}_{\text {sp }}[\mathrm{AgCl}]=1.77 \times 10^{-10}$
$\mathrm{K}_{\text {sp }}\left[\mathrm{Ag}_{2} \mathrm{CO}_{3}\right]=8.1 \times 10^{-12}$	

First-Order		
$\ln [A]=-k t+\ln [A]_{0}$	$t_{\frac{1}{2}}=\frac{\ln (2)}{k}$	$\ln \frac{\mathrm{~A}}{\mathrm{~A}_{\mathrm{O}}}=-\mathrm{kt}$

Spectrochemical series: $\mathrm{CN}^{-}>\mathrm{NO}_{2}^{-}>$en $>\mathrm{NH}_{3}>\mathrm{NCS}^{-}>\mathrm{H}_{2} \mathrm{O}>\mathrm{OH}^{-}>\mathrm{F}^{-}>\mathrm{Cl}^{-}$

$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$	$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$	$\mathrm{~h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} /$ photon
$\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$	$\mathrm{E}=\mathrm{hc} / \lambda$

Compound $\mathrm{S}_{m}{ }^{0} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$		Compound	$\mathrm{Sm}^{0} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
Solids		Diatomic Gases	
C (diamond)	2.377		
C (graphite)	5.74	H_{2}	130.7
Si	18.8	D_{2}	145.0
Ge	31.1	HCl	186.9
Sn (gray)	44.1	HBr	198.7
Pb	64.8	HI	206.6
Li	29.1	N_{2}	191.6
Na	51.2	O_{2}	205.1
K	64.2	F_{2}	202.8
Rb	69.5	Cl_{2}	223.1
Cs	85.2	Br_{2}	245.5
NaF	51.5	I_{2}	260.7
MgO	26.9	CO	197.7
AIN	20.2	Triato	ic Gases
NaCl	72.1	$\mathrm{H}_{2} \mathrm{O}$	188.8
KCl	82.6	NO_{2}	240.1
Mg	32.7	$\mathrm{H}_{2} \mathrm{~S}$	205.8
Ag	42.6	CO_{2}	213.7
I_{2}	116.1	SO_{2}	248.2
MgH_{2}	31.1	$\mathrm{N}_{2} \mathrm{O}$	219.9
AgN_{3}	99.2	O_{3}	238.9
Liquids		Polyatomic Gases(>3)	
Hg	76.0	CH_{4}	186.3
Br_{2}	152.2	$\mathrm{C}_{2} \mathrm{H}_{6}$	229.6
$\mathrm{H}_{2} \mathrm{O}$	69.9	$\mathrm{C}_{3} \mathrm{H}_{8}$	269.9
$\mathrm{H}_{2} \mathrm{O}_{2}$	109.6	$\mathrm{C}_{4} \mathrm{H}_{10}$	310.2
$\mathrm{CH}_{3} \mathrm{OH}$	126.8	$\mathrm{C}_{5} \mathrm{H}_{12}$	348.9
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	160.7	$\mathrm{C}_{2} \mathrm{H}_{4}$	219.6
$\mathrm{C}_{6} \mathrm{H}_{6}$	172.8	$\mathrm{N}_{2} \mathrm{O}_{4}$	304.3
BCl_{3}	206.3	$\mathrm{B}_{2} \mathrm{H}_{6}$	232.0
Monatomic Gases		BF_{3}	254.0
He	126.0	NH_{3}	192.5
Ne	146.2		
Ar	154.8		
Kr	164.0		
Xe	169.6		

$\mathrm{F}=96,485 \mathrm{C} / \mathrm{mole}^{-}$	$\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$	$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$
$\mathrm{~S}=\mathrm{k} \ln \mathrm{W}$	$\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} / \mathrm{photon}$	$\Delta \mathrm{G}^{\mathrm{o}} \mathrm{rxn}=-\mathrm{RT} \ln \mathrm{K}$
$\ln K=-\frac{\Delta H^{\circ} r x n}{R}\left(\frac{1}{T}\right)+\frac{\Delta \Delta^{\circ} r x n}{R}$	$\Delta \mathrm{G}_{\mathrm{rxn}}=\Delta \mathrm{G}^{\mathrm{o}}{ }_{\mathrm{rxn}}+\mathrm{RT} \ln \mathrm{Q}$	$\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}^{\circ}{ }_{\text {cell }}-\frac{R T}{n F} \ln \mathrm{Q}$	$\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nF} \mathrm{E}^{\mathrm{o}}{ }_{\text {cell }}$	$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$\mathrm{k}=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$	$\mathrm{E}=\mathrm{hc} / \lambda$

$\mathrm{t}_{1 / 2}\left[{ }^{14} \mathrm{C}\right]=5730 \mathrm{y}$

Reduction Half-Reaction	$E^{\text {o }}$, volt
Acidic Solution	
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}^{-}(\mathrm{aq})$	+2.866
$\mathrm{O}_{3}(\mathrm{~g})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+2.075
$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	+2.01
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.763
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.51
$\mathrm{PbO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.455
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.358
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.33
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.23
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.229
$2 \mathrm{IO}_{3}{ }^{-}(\mathrm{aq})+12 \mathrm{H}^{+}(\mathrm{aq})+10 \mathrm{e}^{-} \rightarrow \mathrm{I}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.20
$\mathrm{Br}_{2}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})$	+1.065
$\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+0.956
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.800
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.771
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$	+0.695
$\mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})$	+0.535
$\mathrm{I}_{3}{ }^{\text {(aq) }}+2 \mathrm{e}^{-} \rightarrow 3 \mathrm{I}^{-}(\mathrm{aq})$	+0.530
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.340
$\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{SO}_{2}(\mathrm{~g})$	+0.17
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.154
$\mathrm{S}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	+0.14
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.125
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.137
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s})$	-0.277
$\mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cr}^{2+}(\mathrm{aq})$	-0.410
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.440
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.763
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.676
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.356
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.713
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$	-2.84
$\mathrm{K}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{K}(\mathrm{s})$	-2.924
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.040
Basic Solution	
$\mathrm{O}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	+1.246
$\mathrm{OCl}^{-}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$	+0.890
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}(\mathrm{aq})$	+0.401
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.828

The Periodic Table of the Elements

																	He Helium 4003
3	4												6	7	8	,	10
Li	Be											B	C	N	0	F	Ne
$\underbrace{11}_{\substack{\text { Litiom } \\ 6.941}}$													${ }_{\substack{\text { Catan } \\ 12.010}}^{\text {co }}$	${ }_{\text {N }}^{\substack{\text { Ninogen } \\ \text { 140674 }}}$			
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
	$\underbrace{\substack{\text { a }}}_{\substack{\text { Magasum } \\ \text { 24,305 }}}$											${ }_{2}{ }_{20,9881588}^{\text {Alumin }}$	${ }_{\substack{\text { Siliom } \\ 28.085}}^{\text {S }}$	30.973761	Sutitu	${ }_{\substack{\text { chanione } \\ 35.452}}^{\text {che }}$	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	$\mathbf{K r}$
	cock	${ }_{44.959910}$	$\substack{\text { Thatium } \\ 478.87}$		Chionimm		${ }_{5}^{5}$	58.933200				${ }_{\substack{\text { Calium } \\ 69.723}}^{\substack{\text { che }}}$	72.61	${ }_{74.92160}^{\text {Aspaic }}$		(tamine	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	${ }_{\substack{\text { Sturatum } \\ 87.62}}$	${ }_{88 \text { ¢P005 }}^{\substack{\text { Ytium }}}$	$\substack{\text { Ziranaium } \\ 912124}$	${ }^{\text {Natabiom }}$		Netameim			${ }_{\substack{\text { Paladium } \\ \text { 10642 }}}$					(Axtiony			(enten
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
${ }_{\substack{\text { Casium } \\ 1329545}}^{\text {Cit }}$	${ }_{\substack{\text { Braim } \\ 137327}}^{\text {Bre }}$	${ }_{\substack{\text { Lathanum } \\ 138.9055}}^{\text {Len }}$		${ }_{\substack{\text { Tratam } \\ \text { 180.949 }}}^{\text {T }}$	(timent		${ }_{\substack{\text { Onium } \\ \text { Opo23 }}}^{\text {Ond }}$	${ }_{\substack{\text { l }}}^{\text {lidium }}$	${ }_{\substack{\text { Platiom } \\ 195.078}}^{\substack{\text { P }}}$	${ }_{\text {coichab }}^{\substack{\text { Gild }}}$			${ }_{\substack{\text { Lead } \\ 207.2}}$			$\underbrace{\text { ate }}_{\substack{\text { anatioe } \\(210)}}$	$\underbrace{\text { R }}_{\substack{\text { Ratan } \\ \text { (22) }}}$
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
${ }_{\substack{\text { ranacium } \\(223)}}^{\mathrm{F}^{\text {a }}}$		$\underbrace{\substack{\text { cem }}}_{\substack{\text { ncarmimm } \\(227)}}$	(261)	(262)	(tabeme		${ }_{\text {chen }}^{\substack{\text { Hasamm } \\ \text { (26) }}}$	\pm	(269)	(272)	(277)						

$\begin{gathered} 58 \\ \mathrm{Ce} \\ \hline \text { crimu } \end{gathered}$	$\begin{aligned} & 59 \\ & \mathbf{P r} \end{aligned}$	$\begin{gathered} 60 \\ \substack{6 \\ \text { Nedymium }} \\ \hline \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \end{gathered}$	$\begin{gathered} \hline 62 \\ \substack{\text { Semaim } \\ \text { Smamin }} \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \end{gathered}$	$\begin{gathered} \hline 64 \\ \text { Gd } \end{gathered}$	$\begin{gathered} \hline 65 \\ \mathrm{~Tb} \end{gathered}$ $\begin{gathered} \text { Terbium } \\ 158.9253 \end{gathered}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	67 Ho $\begin{aligned} & \text { Holmium } \\ & 164.9303 \end{aligned}$		$\begin{gathered} 69 \\ \text { Tminum } \\ \text { Thut } \end{gathered}$		$\begin{aligned} & 71 \\ & \hline \begin{array}{c} \text { Lutuium } \\ \text { Luty } \\ 1 \end{array} \end{aligned}$
$\frac{140.116}{90}$	${ }^{140.90765}$	144.24	(145)	150.36	151.964	157.25	[58.92394	162.50	164.93032	167.26	168.93421	173.04	174.967
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	13388	238.0289	(cent	(24)	(243)	$\underset{\substack{\text { Curium } \\(247)}}{\text { and }}$	$\underset{\substack{\text { Betactiom } \\(247)}}{ }$	(251)		$\underset{\substack{\text { cemium } \\ \text { (257) }}}{ }$	(natersem		(iver

1. A student titrates 2.884 g of an unknown monoprotic acid to the equivalence point with 62.55 mL of $0.2447 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$. What is the molar mass of the acid?
(A) $\quad 0.005307 \mathrm{~g} / \mathrm{mol}$
(B) $53.07 \mathrm{~g} / \mathrm{mol}$
(C) $530.7 \mathrm{~g} / \mathrm{mol}$
(D) $\quad 73.72 \mathrm{~g} / \mathrm{mol}$
(E) $\quad 188.4 \mathrm{~g} / \mathrm{mol}$
2. Consider the reaction of NH_{3} and water. The conjugate acid is:
(A) $\mathrm{H}_{2} \mathrm{O}$
(B) NH_{3}
(C) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
(D) H^{+}
(E) $\quad \mathrm{NH}_{4}{ }^{+}$
3. The pH of a buffer system which is $0.450 \mathrm{M} \mathrm{HCOOH}(\mathrm{aq})$ and $0.225 \mathrm{M} \mathrm{HCOONa}(\mathrm{aq})$ is:
(A) 3.60×10^{-4}
(B) 4.05
(C) 9.00×10^{-4}
(D) 9.00×10^{-5}
(E) 3.44
4. What is the molar solubility of $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{aq})$? $\left[\mathrm{K}_{\text {sp }}\right.$ of $\mathrm{Al}(\mathrm{OH})_{3}$ is $\left.1.3 \times 10^{-33}\right]$
(A) $3.6 \times 10^{-12} \mathrm{M}$
(B) $2.6 \times 10^{-9} \mathrm{M}$
(C) $4.6 \times 10^{-5} \mathrm{M}$
(D) $3.6 \times 10^{-17} \mathrm{M}$
(E) $\quad 2.9 \times 10^{-10} \mathrm{M}$
5. Which of the following is NOT a Lewis base?
(A) OH^{-}
(B) F^{-}
(C) $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
(D) Cu^{2+}
(E) $\quad \mathrm{NH}_{3}$
6. The concentration of NaOH in water is gradually increased without changing the volume significantly. Which of the following describes what happens to the concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}, the pH and the pOH?

	Concentration of $\mathbf{H}_{\mathbf{3} \mathbf{O}^{+}}$	Concentration of $\mathbf{O H}^{-}$	$\mathbf{p H}$	$\mathbf{p O}$
(A)	increases	increases	increases	decreases
(B)	increases	decreases	increases	decreases
(C)	decreases	increases	decreases	increases
(D)	decreases	decreases	decreases	increases
(E)	decreases	increases	increases	decreases

7. What is the coordination number of the metal ion in $\left[\operatorname{Co}(\mathrm{en})_{2}(\mathrm{ox})\right]$?
(A) 0
(B) 2
(C) 4
(D) 6
(E) 8
8. The splitting of the d orbitals in a transition metal complex is $171 \mathrm{~kJ} / \mathrm{mol}$. What color does this transition metal complex appear to be in transmission?
(A) green
(B) blue
(C) violet
(D) red
(E) orange
9. Which of the following statements is true about the octahedral complex $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$?
(A) The complex is low spin with no unpaired electrons
(B) The complex is low spin with one unpaired electron
(C) The complex is low spin with five unpaired electrons
(D) The complex is high spin with one unpaired electron
(E) The complex is high spin with five unpaired electrons
10. Which of the following processes have a $\Delta \mathrm{S}>0$?
(A) $\quad \mathrm{CH}_{3} \mathrm{OH}(l) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(s)$
(B) $\quad \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$
(C) $\quad \mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{CO}(g)+3 \mathrm{H}_{2}(g)$
(D) $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}_{2}(g) \rightarrow 2 \mathrm{NaHCO}_{3}(s)$
(E) All of the above processes have a $\Delta \mathrm{S}>0$.
11. Consider a reaction that has a negative $\Delta \mathrm{H}$ and a positive $\Delta \mathrm{S}$. Which of the following statements is TRUE?
(A) This reaction will be spontaneous only at low temperatures.
(B) This reaction will be spontaneous at all temperatures.
(C) This reaction will be nonspontaneous at all temperatures.
(D) This reaction will be nonspontaneous only at low temperatures.
(E) All of the above
12. Determine the equilibrium constant for a process at 954 K in which $\Delta \mathrm{H}_{\text {sys }}{ }^{\circ}=-90.8 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}_{\text {sys }}{ }^{\circ}=102.6 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
(A) 481
(B) 1.07×10^{9}
(C) 2.08×10^{-3}
(D) 2.14×10^{10}
(E) $\quad 1.94 \times 10^{12}$
13. When the reaction $\mathrm{Mo}(\mathrm{s})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Cr}^{2+}(\mathrm{aq})+\mathrm{Mo}^{4+}(\mathrm{aq})$ is correctly balanced in acid,
(A) 4 protons $\left(\mathrm{H}^{+}\right)$are consumed
(B) 8 protons $\left(\mathrm{H}^{+}\right)$are consumed
(C) 12 protons $\left(\mathrm{H}^{+}\right)$are consumed
(D) 14 protons $\left(\mathrm{H}^{+}\right)$are consumed
(E) 40 protons $\left(\mathrm{H}^{+}\right)$are consumed
14. An electrochemical cell consists of one beaker containing $1.0 \mathrm{M} \mathrm{AgNO}_{3}(a q)$ into which dips a piece of metallic silver and a second beaker containing $1.0 \mathrm{M} \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(a q)$ into which dips a piece of metallic zinc. The beakers are connected by a salt bridge containing $1.0 \mathrm{M} \mathrm{KNO}_{3}(\mathrm{aq})$. Which of the following statements will be TRUE when a wire is connected between the two pieces of metal at 298 K ?
(A) Electrons will flow from the silver to the zinc.
(B) The cell voltage will be +0.04 V .
(C) There will be no cell voltage as the overall reaction is non-spontaneous.
(D) The silver will plate out on the zinc.
(E) The value of n used to find $\Delta \mathrm{G}^{\circ}$ for this cell has the value 2 .
15. A student provides a current of 1.500 amps through an aqueous solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ for 7.000 hours. The voltage is such that copper is deposited at the cathode. The mass of copper deposited is:
(A) 0.0804 g
(B) 0.1608 g
(C) $\quad 6.222 \mathrm{~g}$
(D) $\quad 12.45 \mathrm{~g}$
(E) $\quad 24.89 \mathrm{~g}$
16. A student constructs a voltaic cell from zinc metal and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ and lead metal and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$. Which one of the following changes to the cell would cause the cell potential to increase?
(A) Increase the $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ (aq) concentration
(B) Increase the $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ (aq) concentration
(C) Increase the mass of $\mathrm{Zn}(s)$
(D) Decrease the mass of $\mathrm{Zn}(s)$
17. Using reduction half-reaction potentials, calculate $\Delta \mathrm{G}^{\circ}$ for the following balanced redox reaction:
$3 \mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{s}) \rightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+6 \mathrm{I}^{-}(\mathrm{aq})$
(A) $-1.28 \times 10^{3} \mathrm{~kJ}$
(B) -213 kJ
(C) $-2.21 \times 10^{3} \mathrm{~kJ}$
(D) $\quad-2.21 \mathrm{~kJ}$
(E) $\quad-640 \mathrm{~kJ}$
18. Which of the following statements is FALSE?
(A) Positron emission can be seen as $\mathrm{p} \rightarrow \mathrm{n}+\mathrm{e}^{+}$
(B) Electron capture can be seen as $\mathrm{p}+\mathrm{e}^{-} \rightarrow \mathrm{n}$
(C) When a beta particle is emitted, an electron is converted to a proton
(D) When an alpha particle is emitted, a helium nucleus is lost from the nucleus of the parent species
(E) A photon is emitted during gamma emission
19. Consider the figure below. A nuclide in "Region 1 " will likely undergo \qquad decay and a nuclide in "Region 2" will likely undergo \qquad decay.

(A) alpha; beta
(B) beta; alpha
(C) alpha; electron capture
(D) electron capture; alpha
(E) beta; positron
20. Which of the following is NOT a structural isomer of 2-methyl-3-ethylheptane?
(A) 5-methylnonane
(B) 2-methyl-4-ethylheptane
(C) 2,2,3,4,4-pentamethylpentane
(D) 2,4-diethyl-3-isopropylpentane
(E) decane
21. An amine and carboxylic acid are reacted together in a condensation reaction. The product is:
(A) an alcohol
(B) hydrogen peroxide
(C) an amide
(D) an ester
(E) a ketone
22. The addition reaction of 1-hexene and HBr produces:
(A) 1-hexane
(B) 1-bromohexane
(C) 2-hexane
(D) 1-methylhexane
(E) 2-bromohexane
23. Which of the following lipids will have the lowest melting point?

a)

c)

b)

d)
24. Xylose, or wood sugar, is one of eight essential sugars for human nutrition. What is the systematic name of this carbohydrate?

Xylose
(A) ketohexose
(B) aldohexose
(C) aldopentose
(D) ketopentose
(E) ketotetrose
25. Which of the following is a disaccharide?
a)

b)

H)

26. Which of the following is NOT an example of a secondary protein structure?
(A) Globular structures such as the four units composing hemoglobin
(B) α-helix
(C) β-pleated sheet
(D) All of the above are secondary protein structures
(E) None of the above are secondary protein structures
27. Which of the following is responsible for linking two strands of DNA in an α-helix?
(A) Ester linkages
(B) Hydrogen bonds
(C) Glycosidic linkages
(D) Peptide bonds
(E) Disulfide linkages
28. The structure of Corticosterone is shown below.

Corticosterone DOES NOT contain:
(A) an alcohol group
(B) an alkene group
(C) a ketone group
(D) an ether group
(E) a methyl group
29. Which of the following is a secondary alcohol?
(A) 3-heptanol
(B) 2-methyl-2-heptanol
(C) 1-ethanol
(D) 1-heptanol
(E) 2,3-dimethyl-1-heptanol
30. Which of the following is FALSE?
(A) A condensation polymer, such as a polyamide, can be formed from a diamine and a dicarboxylic acid
(B) Polymers are long chains formed by monomer units
(C) Addition polymerization is common in alkanes
(D) Teflon is a fluorine containing polymer
(E) Low density polymers are typically more flexible and porous than high density polymers
31. Amino acids can be linked together with \qquad to form \qquad .
(A) ester bonds; proteins
(B) ester bonds; carbohydrates
(C) ester bonds; polysaccharides
(D) amide bonds; polysaccharides
(E) amide bonds; proteins
32. What is the product for the dehydration of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$?
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(B) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
(C) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
(E) $\quad \mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2}$

