Chemistry 232
Final Exam

Winter 2015
March 16, 2015

Oregon State University
Drs. Nafshun, Sleszynski, Watson, Oscar, Ogba

Instructions: You should have with you several number two pencils, an eraser, your $3^{\prime \prime} \mathrm{x} 5$ " note card, a calculator, and your University ID Card. If you have notes with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron answer sheet with your class section number (see below), last name, first name, middle initial, and student identification number. Leave the test form number blank.

Section 001 (MWF 8am with Dr. Nafshun)
Section 003 (MWF 10am with Dr. Sleszynski)
Section 005 (MWF 1pm with Oscar)

Section 002 (MWF 9am with Dr. Nafshun)
Section 004 (MWF 11am with Dr. Watson)
Section 006 (MWF 2pm with Ogba)

This exam consists of 32 multiple-choice questions; each has 5 points attached. When you finish this exam, proceed to the proctor. Flash your OSU ID Card and submit your completed Scantron form. You may take your notecard and this exam packet with you.

Zero-Order	First-Order	Second-Order
$[A]_{t}=-k t+[A]_{0}$	$\ln [A]=-k t+\ln [A]_{0}$	$\frac{1}{[A]}=k t+\frac{1}{[A]_{0}}$
$k=A e^{-E_{a} /(R T)}$	$\ln (k)=\frac{-E_{a}}{R} \frac{1}{T}+\ln (A)$	$\ln \frac{k_{2}}{k_{1}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)$

$\mathrm{R}=8.314 \frac{J}{m o l} \bullet K$	$760 \mathrm{~mm} \mathrm{Hg}=760$ torr $=1 \mathrm{~atm}$	
$\mathrm{M}=\mathrm{mol} / \mathrm{L}$	$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{imk}_{\mathrm{f}}$	$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{imk}_{\mathrm{b}}$
$\mathrm{m}=\mathrm{mol} / \mathrm{kg}$	$\mathrm{k}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86^{\circ} \mathrm{C} / \mathrm{m}$	$\mathrm{k}_{\mathrm{b}}\left(\mathrm{H}_{2} \mathrm{O}\right)=0.512^{\circ} \mathrm{C} / \mathrm{m}$
	$\Pi \mathrm{V}=\mathrm{nRT}$	
For SC: $l=2 \mathrm{r}$	For BCC: $l=4 \mathrm{r} / \sqrt{ } 3$	For FCC: $l=4 \mathrm{r} / \sqrt{ } 2$
$1 \mathrm{~m}=1 \times 10^{12} \mathrm{pm}$	$1 \mathrm{~m}=100 \mathrm{~cm}$	

Solubility Rules for Ionic Compounds

Rule 1: All nitrates, acetates, Group 1A metal salts and ammonium salts are soluble.
Rule 2: Carbonates. hvdroxides. phosphates and sulfides are nearlv alwavs insoluble.
Rule 3: Chlorides, bromides and iodides are always soluble except with Ag^{+}and $\mathrm{Pb}^{\mathbf{2 +}}$. Rule 4: Rule 1 always takes precedence.

Substance	FM (g/mol)	$\begin{aligned} & \text { MP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \Delta H_{\text {(fusion) }} \\ (\mathrm{J} / \mathrm{g}) \end{gathered}$	$\begin{gathered} \mathrm{BP} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\Delta H_{\text {(vap) }}$ (J / g)	Specific Heat ($\left.\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)^{*}$		
						Solid	Liquid	Gas
acetone	58.1	-95.1	96.7	56.1	520	2.26	2.20	1.46
benzene	78.1	5.41	126	80.1	394	1.20	1.90	1.17
ethanol	46.1	-112	100	78.3	852	0.96	2.10	1.71
n-octane	114	-57.0	182	126	339	1.30	2.40	1.30
water	18.0	0.00	334	100	2260	2.09	4.18	1.38

The Periodic Table of the Elements

																	$\begin{aligned} & 2 \\ & \begin{array}{c} \text { He } \\ 4.000 \\ 4.003 \end{array} \end{aligned}$
$\stackrel{3}{3}$	${ }_{4}^{4}$												${ }_{C}^{6}$	${ }^{7}$	$\stackrel{8}{0}$	${ }_{\mathbf{F}}$	${ }_{0}^{10}$
$\stackrel{\text { Lim }}{\text { Limin }}$												($\underset{\substack{\text { Canom }}}{\text { chen }}$	N		F	${ }^{\mathrm{Ne}}$
11	$\frac{12}{12}$												14	${ }^{15}$	${ }^{16}$	17	18
Na	Mg											AI	Si	P	S	Cl	Ar
22, 2 Sision	${ }^{24293050}$											22.981538		, manem		$\underset{\substack{\text { chatas } \\ 354527}}{\substack{\text { che }}}$	
19	20	21	22	${ }^{23}$	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
						ction	${ }_{5}^{5.585}$				${ }_{\substack{\text { che } \\ 6.39}}$		${ }^{2} 2.61$		78.96		${ }^{83.30}$
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
			${ }_{\substack{\text { zapasiou }}}^{\text {and }}$			cosem	$\xrightarrow{\text { Ratation }}$		${ }_{\substack{\text { and }}}^{\text {pitatain }}$,	${ }_{\text {coid }}^{\text {Citainim }}$		Tin			be947	(tatem
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
				$\xrightarrow{\text { cosemat }}$								$\underbrace{\text { nentitim }}$	-	${ }^{\text {a }}$	$\xrightarrow{\text { Papainm }}$	${ }_{\text {a }}$,
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
$\xrightarrow{\text { Frasiom }}$	${ }_{\text {a }}$	$\xrightarrow{\text { andien }}$	(261)	(20)			${ }^{1265)}$	${ }^{(266)}$	(26)	(22)	(27)						

$\begin{gathered} \hline 58 \\ \mathrm{Ce} \end{gathered}$	$\begin{aligned} & \hline 59 \\ & \mathbf{P r} \end{aligned}$	$\begin{gathered} \hline 60 \\ \mathbf{N d} \end{gathered}$	$\begin{gathered} 61 \\ \mathbf{P m} \end{gathered}$	$\begin{gathered} \hline 62 \\ \mathbf{S m} \end{gathered}$	$\begin{aligned} & \hline 63 \\ & \mathbf{E u} \end{aligned}$	$\begin{gathered} \hline 64 \\ \text { Gd } \end{gathered}$	$\begin{gathered} \hline 65 \\ \hline \text { Texbium } \end{gathered}$	$\begin{aligned} & \hline 66 \\ & \text { Dy } \end{aligned}$	$\begin{array}{\|c} \hline 67 \\ \mathbf{H o} \end{array}$	$\begin{aligned} & 68 \\ & \mathbf{c} \\ & \text { Er } \\ & \text { Erimum } \end{aligned}$	$\begin{gathered} \hline \mathbf{6 9} \\ \mathbf{T m} \\ \text { Twhlium } \end{gathered}$	$\begin{aligned} & \hline 70 \\ & \mathbf{Y b} \end{aligned}$	$\begin{aligned} & \hline 71 \\ & \mathbf{L u} \end{aligned}$
140.116	0.90	144.24	(145)	${ }_{15}{ }_{150.36}$	${ }^{151.964}$	${ }_{\text {157.25 }}$	158.22534	162.50	164.93032	167.26	${ }^{168.93421}$	173.04	${ }_{1}^{174967}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	${ }^{\text {Prataat }}$	U Una		(tat	(243)	(247)		(tisi)	边	(25)			$\underbrace{\substack{\text { Luracium } \\ \text { (26) }}}_{\substack{\text { chen }}}$

$\begin{array}{\|l} \begin{array}{l} \mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right]=1.80 \times 10^{-5} \\ \text { (acetic acid) } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} \mathrm{K}_{\mathrm{a}}\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})\right]=6.30 \times 10^{-5} \\ \text { (benzoic acid) } \end{array} \end{aligned}$
$\begin{aligned} & \begin{array}{l} \mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_{2} \mathrm{ClCOOH}(\mathrm{aq})\right]=1.40 \times 10^{-3} \\ \text { (chloroacetic acid) } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \mathrm{K}_{\mathrm{b}}\left[\mathrm{NH}_{3}(\mathrm{aq})\right]=1.80 \times 10^{-5} \\ \text { (ammonia) } \end{array} \end{aligned}$
$\begin{aligned} & \begin{array}{l} \mathrm{K}_{\mathrm{a}}[\mathrm{HClO}(\mathrm{aq})]=2.90 \times 10^{-8} \\ \text { (hypochlorous acid) } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})\right]=1.45 \times 10^{-5} \\ & \text { (pentanoic acid) } \end{aligned}$
$\begin{aligned} & \begin{array}{l} \mathrm{K}_{\mathrm{a}}[\mathrm{HF}(\mathrm{aq})]=6.30 \times 10^{-4} \\ \text { (hydrofluoric acid) } \end{array} \\ & \hline \end{aligned}$	$\mathrm{K}_{\mathrm{b}}\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]=3.70 \times 10^{-4}$ (methylamine)
$\begin{aligned} & \mathrm{K}_{\mathrm{a}}[\mathrm{HCOOH}(\mathrm{aq})]=1.80 \times 10^{-4} \\ & \text { (formic acid) } \end{aligned}$	$\mathrm{K}_{\text {sp }}\left[\mathrm{Fe}(\mathrm{OH})_{2}\right]=4.87 \times 10^{-17}$
$\mathrm{K}_{\text {sp }}\left[\mathrm{PbF}_{2}\right]=3.6 \times 10^{-8}$	$\mathrm{K}_{\text {sp }}\left[\mathrm{MgF}_{2}\right]=3.7 \times 10^{-8}$
$\mathrm{K}_{\text {sp }}\left[\mathrm{Cd}(\mathrm{OH})_{2}\right]=7.2 \times 10^{-15}$	$\mathrm{K}_{\text {sp }}\left[\mathrm{PbI}_{2}\right]=1.4 \times 10^{-8}$
$\mathrm{K}_{\text {sp }}\left[\mathrm{CaSO}_{4}\right]=2.4 \times 10^{-5}$	$\mathrm{K}_{\text {sp }}\left[\mathrm{CaC}_{2} \mathrm{O}_{4}\right]=2.3 \times 10^{-9}$
$\mathrm{K}_{\text {sp }}[\mathrm{CuCl}]=1.0 \times 10^{-6}$	$\mathrm{K}_{\text {sp }}[\mathrm{AgCl}]=1.77 \times 10^{-10}$

Electron Pair and Molecular Geometries

Number of Electron Groups	Number of Lone Pairs	Electron Pair Geometry	Molecular Geometry
2	0	Linear	Linear
3	0	Trigonal planar	Trigonal planar
	1	Trigonal planar	Bent
4	0	Tetrahedral (T_{d})	Tetrahedral (T_{d})
	1	Tetrahedral (T_{d})	Trigonal pyramidal
	2	Tetrahedral (T_{d})	Bent
5	0	Trigonal bipyramidal	Trigonal bipyramidal
	1	Trigonal bipyramidal	See-Saw
	2	Trigonal bipyramidal	T-Shaped
	3	Trigonal bipyramidal	Linear
6	0	Octahedral (O_{h})	Octahedral (O_{h})
	1	Octahedral (Oh_{h})	Square pyramidal
	2	Octahedral (O_{h})	Square planar

Late $2^{\text {nd }}$-period A_{2} Diatomics Scheme

$\mathrm{PV}=\mathrm{nRT}$	$\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}$	$\mu_{\text {rms }}=\sqrt{\frac{3 R T}{\text { Molar Mass }}}$
$\mathrm{R}=0.08206 \frac{\mathrm{~L} \bullet \mathrm{~atm}}{\mathrm{~mol} \bullet \mathrm{~K}}$	$\mathrm{R}=8.314 \frac{\mathrm{~kg} \bullet \mathrm{~m}^{2}}{\mathrm{~s}^{2} \bullet \mathrm{~mol} \bullet \mathrm{~K}}$	$760 \mathrm{Torr}=1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{K}=273.15+{ }^{\circ} \mathrm{C}$	1 mole $=6.02 \times 10^{23}$	Ideal Molar volume $=22.414 \mathrm{~L}$ @ STP $(\mathrm{STP}=1 \mathrm{~atm}$ and 273.15 K$)$

1. Determine the electron geometry (eg) and molecular geometry (mg) of the carbon bonded to the nitrogen in acetonitrile, $\mathrm{CH}_{3} \mathrm{CN}$.
(A) eg=tetrahedral
$\mathrm{mg}=$ tetrahedral
(B) $\quad \mathrm{eg}=$ tetrahedral
$\mathrm{mg}=$ trigonal pyramidal
(C) eg=trigonal planar
$\mathrm{mg}=$ bent
(D) eg=trigonal planar
$\mathrm{mg}=$ trigonal planar
(E) \quad eg=linear
$\mathrm{mg}=$ linear
2. What electron arrangement of charge clouds is expected for an atom that has four electron groups (charge clouds)?
(A) trigonal bipyramidal
(B) trigonal pyramidal
(C) trigonal planar
(D) square planar
(E) tetrahedral
3. What are the approximate bond angles about the sulfur in SF_{6} ?
(A) 160°
(B) 120°
(C) 109.5°
(D) 90°
(E) 60°
4. Which of the following gases exhibit the largest average kinetic energy at STP?
(A) NH_{3}
(B) He
(C) $\quad \mathrm{CO}_{2}$
(D) All have the same average kinetic energy
(E) There is not enough information to answer this question.
5. $\quad \mathrm{N}_{2} \mathrm{O}$ gas has a density of $2.85 \mathrm{~g} / \mathrm{L}$ at $25.0^{\circ} \mathrm{C}$. What is the pressure of the gas?
(A) 0.130 atm
(B) 5.13 atm
(C) 1.58 atm
(D) 1.00 atm
(E) There is not enough information to determine the pressure
6. Methane $\left(\mathrm{CH}_{4}\right)$ reacts with water to form hydrogen gas and carbon monoxide. What volume of methane is required to produce 50.0 g of $\mathrm{H}_{2}(\mathrm{~g})$ at 298 K and 0.950 atm ?

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

(A) 192 L
(B) 213 L
(C) 1280 L
(D) 638 L
(E) 1920 L
7. Using the MO diagram provided, determine the bond order and para/diamagnetism of $\mathrm{O}_{2}{ }^{3-}$.
(A) 1.0 and paramagnetic
(B) 1.0 and diamagnetic
(C) 1.5 and paramagnetic
(D) 0.5 and diamagnetic
(E) 0.5 and paramagnetic
8. A steel gas cylinder contains argon gas at STP. What is the final pressure if the temperature is changed to $145^{\circ} \mathrm{C}$?
(A) 0.653 atm
(B) 0.713 atm
(C) $\quad 1.40 \mathrm{~atm}$
(D) 1.53 atm
(E) 5.80 atm
9. Which of the following is correct for the nitrogen in $\mathrm{CH}_{3} \mathrm{NHCH}_{3}$?

(A)	sp^{2}	eg=trigonal planar	mg=trigonal planar
(B)	sp^{3}	eg=trigonal planar	$\mathrm{mg}=$ trigonal planar
(C)	sp^{2}	eg=tetrahedral	$\mathrm{mg}=$ trigonal planar
(D)	sp^{3}	eg=tetrahedral	mg=trigonal planar
(E)	sp^{3}	eg=tetrahedral	$\mathrm{mg}=$ trigonal pyramidal

10. Which of the following pure compounds exhibits hydrogen bonding?
(A) $\mathrm{CH}_{3} \mathrm{Cl}$
(B) HI
(C) $\quad \mathrm{CH}_{3} \mathrm{OCH}_{3}$
(D) NH_{3}
(E) $\quad \mathrm{CH}_{2} \mathrm{CF}_{2}$
11. The normal boiling point for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ is greater than the normal boiling point for $\mathrm{CH}_{3} \mathrm{CH}_{3}$. This can be explained by:
(A) larger dipole-dipole forces
(B) larger dispersion forces
(C) larger hydrogen-bond forces
(D) larger dipole-dipole forces, larger dispersion forces, and larger hydrogen-bond forces
(E) larger dipole-dipole forces and larger hydrogen-bond forces
12. A Himalayan mountain climber needs to melt 2.00 kg of ice at $0^{\circ} \mathrm{C}$ for drinking water. She has small cylinders of camping gas that provide 155 kJ energy each. How many cylinders will she need to melt all the ice?
(A) 1
(B) 3
(C) 5
(D) 7
(E) 9
13. Which of the following pairs of reactants would you expect to produce a precipitate in aqueous solution?
(A) $\quad \mathrm{NaCl}(\mathrm{aq})$ and $\mathrm{KOH}(\mathrm{aq})$
(B) $\quad \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$ and $\mathrm{BaCl}_{2}(\mathrm{aq})$
(C) $\quad \mathrm{NaNO}_{3}(\mathrm{aq})$ and $\mathrm{AgNO}_{3}(\mathrm{aq})$
(D) $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ and $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$
(E) $\quad \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$
14. What mass of calcium carbonate should be dissolved in water to produce 500.0 mL of a 0.200 M solution?
(A) $\quad 0.100 \mathrm{~g}$
(B) 0.100 kg
(C) $\quad 10.0 \mathrm{~g}$
(D) 1.00 g
(E) $\quad 1.00 \mathrm{~kg}$
15. For the following reaction:

$$
\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Match the appropriate concentration -vs-time profile with the appropriate compound.

Time

(A)	$\mathrm{A}=\mathrm{Ca}(\mathrm{OH})_{2}$	$\mathrm{~B}=\mathrm{HCl}$	$\mathrm{C}=\mathrm{CaCl}_{2}$	$\mathrm{D}=\mathrm{H}_{2} \mathrm{O}$
(B)	$\mathrm{B}=\mathrm{Ca}(\mathrm{OH})_{2}$	$\mathrm{~A}=\mathrm{HCl}$	$\mathrm{C}=\mathrm{CaCl}_{2}$	$\mathrm{D}=\mathrm{H}_{2} \mathrm{O}$
(C)	$\mathrm{A}=\mathrm{Ca}(\mathrm{OH})_{2}$	$\mathrm{~B}=\mathrm{HCl}$	$\mathrm{D}=\mathrm{CaCl}_{2}$	$\mathrm{C}=\mathrm{H}_{2} \mathrm{O}$
(D)	$\mathrm{A}=\mathrm{Ca}(\mathrm{OH})_{2}$	$\mathrm{D}=\mathrm{HCl}$	$\mathrm{C}=\mathrm{CaCl}_{2}$	$\mathrm{~B}=\mathrm{H}_{2} \mathrm{O}$
(E)	$\mathrm{B}=\mathrm{Ca}(\mathrm{OH})_{2}$	$\mathrm{~A}=\mathrm{HCl}$	$\mathrm{D}=\mathrm{CaCl}_{2}$	$\mathrm{C}=\mathrm{H}_{2} \mathrm{O}$

16. In the reaction graph shown below, at which point is the reaction rate the greatest?

Time

(A) A
(B) B
(C) C
(D) D
(E) E
17. What are the units of k in the following rate law? Rate $=k[\mathrm{X}][\mathrm{Y}]$
(A) $\frac{\mathrm{M}}{\mathrm{s}}$
(B) Ms
(C) $\frac{1}{\mathrm{Ms}}$
(D) $\frac{\mathrm{M}^{2}}{\mathrm{~s}}$
(E) $\frac{\mathrm{S}}{\mathrm{M}^{2}}$
18. Given the following rate law, how does the rate of reaction change if the concentration of X is doubled and Y is tripled?
Rate $=\mathrm{k}[\mathrm{X}][\mathrm{Y}]^{2}$
(A) The rate of reaction will increase by a factor of 2
(B) The rate of reaction will increase by a factor of 5
(C) The rate of reaction will increase by a factor of 9
(D) The rate of reaction will increase by a factor of 18
(E) The rate of reaction will decrease by a factor of 5
19. Which of the following statements is FALSE?
(A) When $K_{c} \gg 1$, the forward reaction is favored and essentially goes to completion.
(B) When $\mathrm{K}_{\mathrm{c}} \ll 1$, the reverse reaction is favored and the forward reaction does not proceed to a great extent.
(C) When $\mathrm{K}_{\mathrm{c}} \approx 1$, neither the forward or reverse reaction is strongly favored, and about the same amount of reactants and products exist at equilibrium.
(D) $\quad \mathrm{K}_{\mathrm{c}} \gg 1$ implies that the reaction is very fast at producing products.
(E) None of the above are false.
20. Express the equilibrium constant for the following reaction.

$$
2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

(A) $\quad \mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NaOH}]^{2}\left[\mathrm{H}_{2}\right]}{[\mathrm{Na}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
(B) $\quad \mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]}{[\mathrm{NaOH}]^{2}}$
(C) $\quad \mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{Na}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{[\mathrm{NaOH}]^{2}\left[\mathrm{H}_{2}\right]}$
(D) $\quad \mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}_{2}\right][\mathrm{NaOH}]^{2}$
(E) $\quad \mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NaOH}]^{1 / 2}\left[\mathrm{H}_{2}\right]}{[\mathrm{Na}]^{1 / 2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{1 / 2}}$
21. The equilibrium constant is given for one of the reactions below. Determine the value of the missing equilibrium constant.

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HBr}(\mathrm{~g}) \mathrm{K}_{\mathrm{c}}=3.8 \times 10^{4} \\
& 2 \mathrm{HBr}(\mathrm{~g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \mathrm{K}_{\mathrm{c}}=?
\end{aligned}
$$

(A) 1.9×10^{4}
(B) 5.3×10^{-5}
(C) 2.6×10^{-5}
(D) 6.4×10^{-4}
(E) 1.6×10^{3}
22. Consider the system $\quad \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{SO}_{3}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=6.76$

A student prepares the system and measures:
$\left[\mathrm{SO}_{2}\right]=1.03 \mathrm{M} \quad\left[\mathrm{CO}_{2}\right]=1.22 \mathrm{M} \quad[\mathrm{CO}]=2.93 \mathrm{M} \quad\left[\mathrm{SO}_{3}\right]=2.90 \mathrm{M}$
(A) The system is at equilibrium.
(B) The system is not at equilibrium and more product will form.
(C) The system is not at equilibrium and more reactant will form.
(D) The system is not at equilibrium and you will need to add more product.
(E) The system is not at equilibrium and you will need to add more reactant.
23. What is the pH of $0.750 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$?
(A) 0.750
(B) 0.00367
(C) 2.43
(D) 1.75
(E) 6.25
24. For the following chemical equilibrium, which of the following statements are correct?
$\mathrm{CO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})}$

$\mathrm{COCl}_{2(\mathrm{~g})}$
$\mathrm{K}_{\mathrm{c}}=1.5 \times 10^{4}$ and $\Delta \mathrm{H}=-243 \mathrm{~kJ} / \mathrm{mole}$
(A) Increasing the pressure will create more products
(B) Increasing the pressure will create more reactants
(C) Increasing the temperature will create more products
(D) Decreasing the pressure will create more products
(E) Decreasing the temperature will create more reactants
25. Which of the following is an Arrhenius base?
(A) $\mathrm{CH}_{3} \mathrm{COOH}$
(B) LiOH
(C) $\mathrm{CH}_{3} \mathrm{OH}$
(D) NaBr
(E) More than one of these compounds is an Arrhenius base.
26. Which of the following species is amphoteric?
(A) $\mathrm{CO}_{3}{ }^{2-}$
(B) HF
(C) $\mathrm{NH}_{4}+$
(D) $\mathrm{HPO}_{4}{ }^{2-}$
(E) None of the above are amphoteric.
27. What is the conjugate acid of $\mathrm{HCO}_{3}{ }^{-}$?
(A) $\mathrm{H}_{3} \mathrm{O}^{+}$
(B) $\mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{CO}_{3}{ }^{2-}$
(D) OH^{-}
(E) $\mathrm{H}_{2} \mathrm{CO}_{3}$
28. The stronger the acid, then which of the following is TRUE?
(A) The stronger the conjugate acid.
(B) The stronger the conjugate base.
(C) The weaker the conjugate base.
(D) The weaker the conjugate acid.
(E) None of the above.
29. Which of the following solutions would have the highest pH ? Assume that they are all 0.10 M in acid at $25^{\circ} \mathrm{C}$. The acid is followed by its K_{a} value.
(A) $\mathrm{HF}, 3.5 \times 10-4$
(B) $\mathrm{HCN}, 4.9 \times 10-10$
(C) $\mathrm{HNO}_{2}, 4.6 \times 10^{-4}$
(D) $\mathrm{HCOOH}, 1.8 \times 10-4$
(E) $\mathrm{HClO}_{2}, 1.1 \times 10^{-2}$
30. Which solution(s) is (are) expected to be neutral pH ? $\mathrm{NH}_{4} \mathrm{Br}(\mathrm{aq}), \mathrm{KBr}(\mathrm{aq}), \mathrm{AlBr}_{3}(\mathrm{aq})$, or $\mathrm{KNO}_{3}(\mathrm{aq})$?
a. $\mathrm{NH}_{4} \mathrm{Br}$ (aq) only
b. $\operatorname{KBr}(\mathrm{aq})$ only
c. AlBr_{3} (aq) only
d. $\mathrm{KNO}_{3}(\mathrm{aq})$ only
e. $\mathrm{KNO}_{3}(\mathrm{aq})$ and $\mathrm{KBr}(\mathrm{aq})$
31. Which of the following statements is true in this reaction:
$\mathrm{Zn}^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftarrows \mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}(\mathrm{aq})$
a) $\mathrm{Zn}^{2+}(\mathrm{aq})$ is the Lewis acid in this reaction.
b) $\mathrm{NH}_{3}(\mathrm{aq})$ is the Lewis acid in this reaction.
c) $\mathrm{Zn}\left(\mathrm{NH}_{3}\right) 4^{2+}(\mathrm{aq})$ is the Lewis acid in this reaction.
d) Both $\mathrm{Zn}^{2+}(\mathrm{aq})$ and $\mathrm{NH}_{3}(\mathrm{aq})$ are Lewis acids in this reaction.
e) There are no Lewis acids in this reaction.
32. Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ dissolves in water according to the equations:

$$
\begin{aligned}
& \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \\
& \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
\end{aligned}
$$

CO_{2} levels in the atmosphere have increased about 20% over the last century. Given that Earth's oceans are exposed to atmospheric CO_{2}, which of the following best predicts the effects of increased CO_{2} levels on the pH of the Earth's oceans now?
a) The pH of Earth's oceans now is higher than the pH of Earth's oceans a century ago.
b) The pH of Earth's oceans now is the same as the pH of Earth's oceans a century ago.
c) The pH of Earth's oceans now is lower than the pH of Earth's oceans a century ago.
d) The increase in CO_{2} levels in Earth's oceans has no effect on its pH level.

