Instructions: You should have with you several number two pencils, an eraser, your 3" x 5" note card, a calculator, and your University ID Card. If you have notes or a phone with you, place them in a sealed backpack and place the backpack OUT OF SIGHT or place the notes directly on the table at the front of the room.

Fill in the front page of the Scantron sheet with your last name, first name, middle initial, student identification number, and section number (below). Leave the test form number blank.

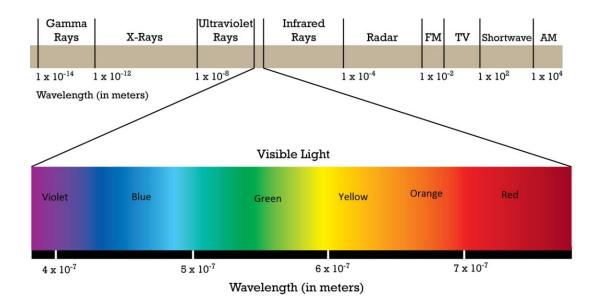
Section 001 (MWF 8am with Dr. Nafshun) Section 002 (MWF 9am with Dr. Nafshun) Section 003 (MWF 10am with Dr. Nafshun) Section 004 (MWF 11am with Dr. Watson)

Section 005 (MWF 1pm with Dr. Nyman)

Section 006 (MWF 2pm with Dr. Barth)

Section 007 (MWF 3pm with Dr. Burand)

This exam consists of 32 multiple-choice questions; each has 5 points attached. When you finish this exam, proceed to the proctor. Flash your OSU ID Card and submit your completed Scantron form. You may take your notecard and this exam packet with you.


1																	18
1 A																	8A
1 H Hydrogen 1.008	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He Helium 4.003
3 Li Lithium 6.941	4 Be Beryllium 9.012											5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 0 _{Oxygen} 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18
Na Sodium 22.99	12 Mg Magnesium 24.31	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 _8B _	10	11 1B	12 2B	13 Al Aluminum 26.98	14 Si Silicon 28.09	15 P Phosphorous 30.97	16 S Sulfur 32.07	17 Cl Chlorine 35.45	18 Ar Argon 39.95
19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47.87	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Copper 63.55	30 Zn Zinc 65.38	31 Ga Gallium 69.72	32 Ge Germanium 72.64	As Arsenic 74.92	34 Se Selenium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 95.96	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd Palladium 106.42	47 Ag silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn Tin 118.7	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 lodine 126.90	54 Xe Xenon 131.29
55 Cs Cesium 132.91	56 Ba Barium 137.33	57 La Lanthanum 138.91	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 TI Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (208.98)	85 At Astatine (209.99)	86 Rn _{Radon} (222.02)
87 Fr Francium (223.02)	88 Ra Radium (226.03)	89 Ac Actinium (227.03)	104 Rf Rutherfordium (261.11)	105 Db Dubnium (262.11)	106 Sg Seaborgium (266.12)	107 Bh Bohrium (264.12)	108 Hs Hassium (269.13)	109 Mt Meitnerium (268.14)	110 Ds Darmstadtium (271)	111 Rg Roentgenium (272)	112 Cn Copernicium (285)	113	114 Fl Flerovium (289)	115	116 Lv Livermorium (293)	117	118

\														
	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Υb	Lu
		Praseodymium	Neodymium		Samarium	Europium	Gadolinium	Terbium	Dysprosium		Erbium	Thulium	Ytterbium	Lutetium
	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Thorium	Protactinium		Neptunium		Americium	Curium	Berkelium				Mendelevium		Lawrencium
	232.04	231.04	238.03	(237.05)	(244.06)	(243.06)	(247.07)	(247.07)	(251.08)	(252.08)	(257.10)	(258.10)	(259.10)	(262.11)

TABLE 1.2 SI	Prefix Multipliers		
Prefix	Symbol	Multiplier	
exa	E	1,000,000,000,000,000,000	(10 ¹⁸)
peta	Р	1,000,000,000,000,000	(10 ¹⁵)
tera	T	1,000,000,000,000	(10 ¹²)
giga	G	1,000,000,000	(10 ⁹)
mega	M	1,000,000	(10^6)
kilo	k	1000	(10 ³)
deci	d	0.1	(10^{-1})
centi	С	0.01	(10^{-2})
milli	m	0.001	(10^{-3})
micro	μ	0.000001	(10^{-6})
nano	n	0.00000001	(10^{-9})
pico	р	0.00000000001	(10^{-12})
femto	f	0.00000000000001	(10^{-15})
atto	a	0.000000000000000001	(10^{-18})

1 inch = 2.54 cm (exact)	1 mile = 1.60934 km
1000 mL = 1 L	$1 \text{ mL} = 1 \text{ cm}^3$
1 mole (N _A) = 6.022×10^{23}	$c = 3.00 \times 10^8 \text{ m/s}$
$h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$	$1 \text{ m} = 1 \text{ x } 10^9 \text{ nm}$

9 Polyatom	ic Ions	<u>Material</u>	Specific Ho
Name	Formula	H ₂ O (1)	4.184
Hydroxide	OH-	CH ₃ CH ₂ OH (l)	2.42
Cyanide	CN-	Pb (s)	0.128
Nitrate	NO ₃ -	Au (s)	0.128
Acetate	CH ₃ COO-	Ag (s)	0.235
Carbonate	CO ₃ ²⁻	Cu (s)	0.385
		Fe (s)	0.449
Phosphate	PO ₄ ³⁻	Al (s)	0.903
Hydronium	H ₃ O ⁺	Sand Granite	0.84
Ammonium	NH ₄ ⁺	Granic	0.790
Sulfate	SO ₄ ² -		

$\lambda = \frac{h}{mv}$	$q = mc\Delta T$	$q=m\Delta H$
$\Delta E = q + w$	q = c ΔT	$c = 3.00 \times 10^8 \text{ m/s}$
$h = 6.626 \times 10^{-34} \text{J} \cdot \text{s}$	$v = \frac{c}{\lambda}$	E = hv
$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$	$R_{\rm H} = 2.180 \ x \ 10^{-18} \ J/photon$	R _H = 10973731.6 m ⁻¹
$1 J = 1 \frac{kg \bullet m^2}{s^2}$	electron mass = 9.10938 × 10 ⁻³¹ kg	E=mc ²
ЕΨ=НΨ	$\Delta E = q + w$	$W = -P\Delta V$
ΔΗ = ΔΕ - ΡΔV	P(r) = 4 π r ² Ψ ²	$(\Delta x)(m\Delta v) \ge h/4\pi$
$E_n = -hcR_{\infty}/n^2$	$E_n = -RZ^2/n^2$	

25.	A student combusts a compound in a bomb calorimeter, and the temperature of the calorimeter increases from 62 °C to 27.42 °C. The calorimeter has a constant of 91.82 J/°C. How many significant figures can the student report the ΔE in this reaction?
a)	1
b)	2
c)	3
d)	4
e)	5
	A solid cube is measured to be 0.451 inches on each side. The mass of the cube is 12.9 g. Which of the following tals is this cube most likely to be?
a)	Yttrium (4.45 g/cm³)
b)	Lead (11.3 g/cm ³)
c)	Iridium (22.4 g/cm³)
d)	Tellurium (4.95 g/cm³)
e)	Niobium (8.58 g/cm³)
3. \	Which of the following statements about subatomic particles is TRUE ?
a)	A neutral atom contains the same number of protons and electrons.
b)	Protons have about the same mass as electrons.
c)	Electrons make up most of the mass of an atom.
d)	Protons and neutrons have opposite, but equal in magnitude, charges.

e) Neutrons and electrons are found in the nucleus of an atom.

4. How many moles of Kr are contained in 398 mg of Kr?
a) 4.75×10^{-3} moles Kr
b) 33.4 moles Kr
c) 2.11 × 10 ⁻⁴ moles Kr
d) 2.99×10^{-3} moles Kr
e) 1.19 × 10 ⁻⁴ moles Kr
5. The fictional element Beaverium (Bv) has two stable isotopes: 145 Bv (mass = 144.9362 amu) and 148 Bv (mass = 147.9177 amu). Which of the following <u>could not</u> be the average atomic mass of Beaverium?
a) 145.7731 amu
b) 144.9968 amu
c) 146.3214 amu
d) 147.9882 amu
e) any of these could be the average atomic mass based on the information given
6. How many total electrons are present in 0.1415 g of oxide ions?
a) 2.23 x 10 ²³ electrons
b) 3.20 x 10 ²² electrons
c) 4.26 x 10 ²² electrons
d) 8.84 x 10 ²² electrons
e) 5.33 x 10 ²² electrons

7.	Which of the	following	nairs of	formulas an	d names are	incorrect?
٠.	VVIIICII OI LIIC	, IOIIOWIIIS	panson	ioiiiiaias aii	a mannes are	IIICOITCCL:

- a) Fe₃(PO₄)₂; iron (III) phosphate
- b) NH₄OH; ammonium hydroxide
- c) CaCl₂; calcium chloride
- d) Al(NO₃)₃·6H₂O; aluminum nitrate hexahydrate
- e) TiS₂; titanium (IV) sulfide

Q	How many grams of water are in 16.00	g of FeSO4 ·4H ₂ O	2 Molar Mass of FeSO	$4.4 H_2 \Omega = 224 \Omega g/mol$
ο.	How many grains of water are in 10.00	g 01 1 e304 '41120	r: Iviolai Iviass oi i eso	4 '41120 - ZZ4.0 g/11101

- a) 5.149
- b) 4.571
- c) 6.429
- d) 3.502
- e) 4.857

9. Aqueous iron(II) chloride reacts with aqueous sodium phosphate to produce solid iron(II) phosphate and aqueous sodium chloride. Which represents a balanced equation of this?

a)
$$3 \operatorname{Fe_2Cl}(aq) + \operatorname{Na_3PO_4}(aq) \rightarrow \operatorname{Fe_2(PO_4)_2}(s) + 3 \operatorname{NaCl}(aq)$$

b)
$$FeCl_2(aq) + Na_3PO_4(aq) \rightarrow Fe_3(PO_4)_2(s) + NaCl(aq)$$

c)
$$FeCl_3$$
 (aq) + Na_3PO_4 (aq) $\rightarrow Fe_2PO_4$ (s) + 3 $NaCl$ (aq)

d)
$$3 \operatorname{FeCl}_2(aq) + 2 \operatorname{Na}_3 \operatorname{PO}_4(aq) \rightarrow \operatorname{Fe}_3(\operatorname{PO}_4)_2(s) + 6 \operatorname{NaCl}(aq)$$

e)
$$3 \operatorname{FeCl}_2(aq) + \operatorname{Na}_3 \operatorname{PO}_4(aq) \rightarrow 2 \operatorname{Fe}_3(\operatorname{PO}_4)_2(s) + 3 \operatorname{NaCl}(aq)$$

	8.84 g of a compound is analyzed and found to contain 3.53 g of C, 0.295 g of H, 4.08 g of N, and 0.935 g of O. ich of the following could be the molecular formula for this compound?
a)	$C_{10}H_{10}N_{10}O_2$
b)	$C_4H_8N_6O_2$
c)	$C_2H_4N_6O$

11. Consider the following reaction:

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

What mass of hydrogen gas must be reacted in excess nitrogen gas to give a theoretical yield of 75.0 g of NH₃ gas?

a) $6.60 g H_2$

 $C_5H_{10}N_3O_3$

 $C_8H_8N_8O_4$

e)

- b) 13.3 g H₂
- c) 46.5 g H₂
- d) 11.3 g H₂
- e) 5.92 g H₂
- 12. Indium can react with oxygen gas to form indium(III) oxide. If this reaction has a percent yield of 63.8%, how many mol of indium must be reacted in excess oxygen to yield 3.00 mol of indium(III) oxide?

2 In (s) +
$$\frac{3}{2}$$
 O₂ (g) \rightarrow In₂O₃ (s)

- a) 5.74 mol In
- b) 4.70 mol In
- c) 9.40 mol In
- d) 3.00 mol In
- e) 6.00 mol In

13.	Consider	the	follo	owing	reaction:
-----	----------	-----	-------	-------	-----------

$$4 C_2 H_3 OF (g) + 9 O_2 (g) \rightarrow 8 CO_2 (g) + 6 H_2 O (g) + 2 F_2 (g)$$

When 5.82 mol of C_2H_3OF and 10.35 mol of O_2 are initially present in the reaction mixture, how much of which reactant will remain after the reaction goes to completion?

- a) 1.15 mol O₂ remain
- b) 4.53 mol C₂H₃OF remain
- c) 1.22 mol C₂H₃OF remain
- d) 2.97 mol C₂H₃OF remain
- e) 2.75 mol O₂ remain

14. What mass of stones ($C_s = 0.841 \, \text{J/g} \cdot ^{\circ}\text{C}$) that are heated to 815.0 $^{\circ}\text{C}$ must be added to 750.0 g of water ($C_s = 4.184 \, \text{J/g} \cdot ^{\circ}\text{C}$) initially at 22.3 $^{\circ}\text{C}$ to raise the temperature of the water to the boiling point (100.0 $^{\circ}\text{C}$)?

- a) 793 g stones
- b) 405 g stones
- c) 445 g stones
- d) 366 g stones
- e) 557 g stones

15. Consider the combustion of ethanol, C₂H₅OH:

$$C_2H_5OH(I) + 3O_2(g) \rightarrow 3H_2O(I) + 2CO_2(g)$$

Use Hess' law to calculate ΔH° for this reaction. Equations that may be of use:

I.
$$C_2H_4(g) + 3O_2(g) \rightarrow 2H_2O(I) + 2CO_2(g)$$
 $\Delta H^\circ = -1411 \text{ kJ}$

II.
$$C_{graphite}(s) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(I)$$
 $\Delta H^{\circ} = -278 \text{ kJ}$

III.
$$C_2H_4(g) + H_2O(I) \rightarrow C_2H_5OH(I)$$
 $\Delta H^{\circ} = -44 \text{ kJ}$

- a) 632 kJ
- b) 44 kJ
- c) -1367 kJ
- d) -1742 kJ
- e) -2348 kJ

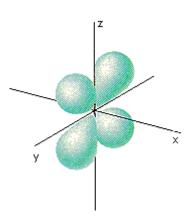
16. Calculate the standard enthalpy for the following reaction:

$$4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(I)$$

Given the following values:

$$\Delta H_f^{\circ}$$
 for NH₃(g) = -46 kJ/mol

$$\Delta H_f^{\circ}$$
 for NO₂(g) = 34 kJ/mol


$$\Delta H_f^{\circ}$$
 for H₂O(I) = -286 kJ/mol

- a) -46 kJ
- b) -206 kJ
- c) -286 kJ
- d) -1396 kJ
- e) Cannot be determined from the information provided

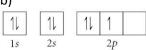
17. It takes 208.4 kJ of energy to remove 1 mol of electrons from an atom on the surface of rubidium (Rb) metal. What is the **maximum** wavelength of light capable of removing a single electron from an atom on the surface of solid Rb?

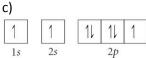
- a) $9.532 \times 10^{-31} \text{ nm}$
- b) $9.532 \times 10^{-11} \text{ nm}$
- c) $9.532 \times 10^{1} \text{ nm}$
- d) $5.740 \times 10^2 \text{ nm}$
- e) $9.532 \times 10^5 \text{ nm}$

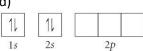
18. The figure below can be labeled:

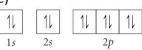
- a) a 2p_x atomic orbital
- b) a 2p_z atomic orbital
- c) a 5d atomic orbital
- d) a 5s atomic orbital
- e) a 4s atomic orbital

19. Give the complete electronic configuration for P.


- 1s² 2s² 2p⁶ 3s¹ 3d⁵ a)
- 1s² 1p⁶ 2s² 2p⁵ b)
- 1s² 2s² 2p⁶ 3s² 3p³ c)
- d) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d³
- 1s² 2s² 2p⁶ 3s² 3d⁶ e)


20. Choose the orbital diagram that represents the ground state of N.


a)


b)

e)

21. Which of the following is **FALSE**?

- a) Na is larger than Na⁺
- b) Al is larger than Al³⁺
- c) O is larger than O²⁻
- d) O is larger than Ne
- e) Xe is larger than Ne

22. Place the following in order of increasing radius.

Br⁻ K⁺ Rb⁺

- a) $Br^{-} < Rb^{+} < K^{+}$
- b) $K^+ < Rb^+ < Br^-$
- c) $Rb^+ < Br^- < K^+$
- d) $Br^{-} < K^{+} < Rb^{+}$
- e) $Rb^{+} < K^{+} < Br^{-}$

23. Which of the following is FALSE?

- a) Elements in the same group have the same valence electron configuration.
- b) Atomic radius of elements in a group increases as you go from top to bottom.
- c) Completely empty and completely full shells are very stable.
- d) First ionization energy of elements in the same group increases as you go from top to bottom.
- e) All of the above.

- 24. Chemical bonds form because:
- a) Doing so lowers the potential energy between the charged particles that compose atoms
- b) Doing so allows the bonded atoms to fit into a smaller volume
- c) Doing so raises the potential energy of the atoms that make up the molecule, which can subsequently release this energy by breaking the bond(s)
- d) Doing so allows the bonded atoms to have a greater density
- e) Doing so allows protons of one atom to combine with electrons of another to form neutrons
- 25. Under the Lewis model, which best explains why helium (He) obeys the duet rule instead of the octet rule?
- a) Helium is a noble gas
- b) Helium atoms almost never form covalent bonds
- c) Helium atoms are much less massive than most other elements
- d) The n = 1 quantum level fills with only two electrons
- e) None of the above statements are correct

26. All the carbon-carbon bonds in benzene (a Lewis structure is shown below) are known to be the same length. The reason for this is best supported by:

- a) Hund's rule
- b) The concept of resonance
- c) The Aufbau principle
- d) The shape of carbon's 2s orbital
- e) The shape of carbon's 2p orbital

27. The Lewis Dot Structure of the hydroxide ion (OH⁻) depicts:

- (A) There are no lone **pairs** of electrons.
- (B) There is one lone **pair** of electrons.
- (C) There are two lone **pairs** of electrons.
- (D) There are three lone **pairs** of electrons.
- (E) There are four lone **pairs** of electrons.

28. Choose the best Lewis structure for NH₄.

$$(A) \begin{bmatrix} H \\ H = N = H \\ H \end{bmatrix}^{+}$$

$$(B) \begin{bmatrix} H & H \\ H - N - H \\ H \end{bmatrix}$$

(C)
$$\begin{bmatrix} H \\ H - N = H \\ H \end{bmatrix}^{+}$$

(D)
$$\begin{bmatrix} H \\ H - N - H \\ H \end{bmatrix}^{+}$$

(E)
$$\begin{bmatrix} H \\ H - N - H \\ H \end{bmatrix}^{+}$$

29. Choose the best Lewis structure for CH₂Cl₂.

D)
$$\vdots \ddot{\Box} = \ddot{\Box} = \ddot{\Box} \vdots$$

30. The Lewis Dot Structure of H₂O depicts:

- (A) There are no lone **pairs** of electrons.
- (B) There is one lone **pair** of electrons.
- (C) There are two lone **pairs** of electrons.
- (D) There are three lone **pairs** of electrons.
- (E) There are four lone **pairs** of electrons.

31. A student suggests a Lewis Structure for sulfate (SO_4^{2-}) to have two double bonds and two single bonds to the central sulfur. The formal charge on the sulfur is:	
a) -4	
b) -2	
c) 0	
d) +2	
e) +4	
32. Which of the following would not exhibit any resonance structures?	
a) O ₃	
b) CF ₄	
c) NO ₃ ⁻	
d) SO_4^{2-}	

e) CO₃²⁻