This examination is based on the work of the research group of Dr. Alexey Shvarev (have you seen him?) from the Chemistry Department at Oregon State University. In 2006 they published an article:
in which the concept of photoresponsive optical chemical sensor has been introduced. A copy of the article is attached to your exam along with the supporting information. Demonstrate your knowledge of basic concepts of spectrochemical analysis by answering the following questions.

1. (5 pts) Draw a schematic picture of the optical train without the microscope and illumination source (spectrometer+detector only). According to manufacturer specification, ACTON Microspec 2150 is based on Czerny-Turner monochromator. The resolution of the CCD array is 512x512 pixels.

2. (5 pts) The entrance slit of the monochromator was 100 micrometers wide. What was the width of the exit slit?

3. (5 pts) The grating of the spectrometer is blazed at 300 nm. What does it mean? What is the optimal wavelength range for the grating (the region where intensity at given wavelength drops by one-half of the maximum value)? What is the best blaze wavelength for the experiment described in the paper?

4. (5 pts) The linear dispersion ACTON Microspec 2150 is 4.17 nm/mm at 435.833 nm. The focal length is 150 mm. Can you calculate the angular dispersion?

5. (5 pts) Draw a schematic picture of the fluorescence spectra of pure protonated and pure deprotonated form of the chromoionophore (fluorophore). Show corresponding emission peaks. Based on the fluorescence emission spectra what can you tell about the UV_VIS absorption of the chromoionophore?

6. (5 pts) Why ratiometric detection is advantageous? How would you modify the experiment to do the ratiometric measurement if the chromoionophore emits fluorescence only in protonated form?
We report here on a novel concept of a photoresponsive ion-selective optical sensor. Ion-selective optical sensors (ion optodes) are based on the same compounds (ion carriers, ion-exchangers, etc.) and response mechanisms as in ion-selective electrodes (ISEs). A wide range of ion optodes have been developed over the past two decades. Typically, these sensors have been fabricated as thin polymeric films on a transparent substrate, as miniature probes at the tip of an optical fiber, or in the form of micron and submicron-sized polymeric beads. Recently, it was demonstrated that thousands of such beads can be injected into a living cell without significant perturbation, thus allowing one to monitor intracellular activities of different ions.

To date, ion optodes have been used only in a passive mode, under conditions of the thermodynamic equilibrium. However, in the past decade, several novel analytical methods based on a nonequilibrium response mechanism have been developed for the potentiometric counterparts to ion optodes (ISEs). Ion fluxes in the ISEs can be controlled with a preset concentration gradient across a membrane or by means of nonequilibrium electrochemical methods. These techniques give a remarkable improvement in sensitivity, allow one to drastically reduce detection limits, perform multianalyte detection with a single sensor, distinguish activity and total concentration of an analyte, and detect surface binding events.

Due to similarities in the response mechanism, the abovementioned nonequilibrium detection methods can be applied to ion-selective optical sensors, as well. However, methods of ion flux control developed for ISEs are not applicable for bead-based assays of miniature ion probes. Rather, the most convenient way to generate and control ion fluxes in the optical probe is to make an optode photoresponsive. Light can be used both to control an ion probe with a photochemical reaction and at a different wavelength to read out the response via absorbance or fluorescence detection.

A regular cation-selective optode contains an ionophore, which selectively binds a primary ion and a second ionophore (chromionophore) that interacts with a reference ion (usually, hydrogen) and changes the optical properties. The competition between two ions for ion-exchange sites in the optode matrix determines the sensor response. We envision three possible methods to photochemically perturb the equilibrium in an ion optode: use photoresponsive ion carriers, photogenerate the ion-exchange sites, or photogenerate an acid or base in the optode matrix. The last of these is especially attractive since it can be easily achieved using photochemical acid generators (PAGs) widely used in chemically amplified photolithography.

Of course, irreversible photolysis of a PAG does limit sensor lifetime. However, this is not a drawback for a disposable optical bead-based assay.

In this study, we employed a sodium/hydrogen ion-selective optode in “proof-of-concept” experiments.

Figure 1. (A) Fluorescence spectra of the chromionophore in the optode film containing PAG. The upper and the lower spectra were recorded in NaOH and HCl solutions and correspond to complete deprotonation and protonation of the chromionophore. The intermediate spectra were recorded in the solution containing 0.05 M MgCl2 and 0.1 M Tris (2-amino-2-hydroxymethyl)-1,3-propanediol) at pH 8 at different activities of sodium ions (numbers on the curves correspond to pNa). (B) Calibration curves for the optode film with and without PAG. The line represents the calculated theoretical response; (1-α) is a relative degree of chromionophore protonation. Fluorescence intensity is given in arbitrary units.

The sensor was fabricated as a 5 μm plasticized poly(vinyl chloride) film deposited on a microscope cover glass. The film contained 40 mmol kg⁻¹ sodium ionophore (tert-butyl calix[4]arene tetraacetic acid tetraethyl ester), 20 mmol kg⁻¹ ion-exchanger (sodium tetraakis(4-chlorophenyl)borate), and 10 mmol kg⁻¹ chromionophore I (ETH 5294). To make the optode photoresponsive, we loaded 45 mmol kg⁻¹ nonionic PAG (2,4-bis(trichloromethyl)-6-(4-methoxy styryl)-1,3,5-triazine) into the sensor matrix. This PAG produces HCl upon illumination with UV light at 350 nm.

The experimental setup consisted of an inverted fluorescence microscope and imaging spectrometer with CCD camera. UV light at 350(±25) nm was used for PAG photolysis, and fluorescence of the chromionophore caused by excitation at 550(±25) nm was recorded from 600 to 800 nm. A xenon arc lamp with a four-filter fast wavelength switch was employed as a light source. Ratiometric fluorescence measurements were performed comparing emission peaks at 650 and 672 nm.

Figure 1A shows fluorescence spectra for the optode containing PAG at constant pH and various activities of sodium ions. As we expected, the optode response is not affected by the presence of PAG; the calibration curves for the optode film with and without PAG were very similar (Figure 1B). The parameter (1-α) is the fraction of the total chromionophore concentration that is present in the protonated form.

The initial fluorescence spectra of the optode equilibrated with aqueous solution are quite reproducible, as shown in Figure 2A. However, illumination for just 1 s with a UV light pulse caused...
the photogeneration of hydrochloric acid, followed by instantaneous protonation of the chromoionophore and subsequent drastic change in the fluorescence spectrum.

After UV exposure, we recorded fluorescence spectra every 5 s to monitor the equilibration process, which is controlled by the diffusion of hydrochloric acid into the aqueous solution (Figure 2B). The final top spectrum in Figure 2B is almost identical to the one recorded prior to UV exposure, indicating that the photogenerated acid completely leached out of the sensor matrix.

In the next series of experiments, the concentration of sodium ions was kept constant at $10^{-3} \text{M}$, and the concentration of Tris buffer was varied from $10^{-4}$ to $10^{-2} \text{M}$. The pH was kept constant at 8.0 ($\pm 0.05$ units). The optode film was replaced with a new one in each experiment.

Clearly, the equilibrium optode response (Figure 3A) did not depend on the total Tris concentration. However, the nonequilibrium response recorded after UV illumination was strongly affected by the buffer capacity of the sample (Figure 3B). Equilibration time increased as the buffer capacity of the sample decreased.

This result can be explained on the basis of a non-steady-state diffusion model. If a flux of the photogenerated hydrogen ions is sufficient to completely protonate the Tris base at the sensor/sample interface, the solution at the interface is no longer buffered, and the pH at the interface is appreciably lower than that in the bulk sample. The pH at the interface is dictated by the balance of two ion fluxes: the flux of hydrogen ions coming from the sensor matrix and the flux of Tris diffusing from the bulk of the aqueous solution sample toward the interface. A lower total concentration of buffer in the bulk sample results in a lower pH at the interface and slower diffusion of the acid.

After prolonged contact with the sample, the perturbation disappears and the sensors equilibrated to $(1-\alpha) = 0.57 \pm 0.03$, which is consistent with the recorded equilibrium response $(1-\alpha) = 0.60 \pm 0.04$ in a series of five consecutive measurements.

In conclusion, these experiments demonstrate the general applicability of nonequilibrium detection methods to optical ion-selective sensors. Photochemical reactions can be utilized to generate and control ion fluxes in an ion-selective sensor in the same manner as nonequilibrium electrochemical methods have been used in ISEs. In particular, the ability of the proposed photo-responsive probe to detect the buffer capacity, in addition to the activity of hydrogen ions, is a great advantage over classic ion optodes. The fact that active optical probes can be scaled down to the submicron size makes them especially attractive for intracellular applications.

Finally, we note that common optical techniques, such as fluorescence microscopy and flow cytometry, can be combined with active ion probes with only minor modification of the existing experimental setup.

Acknowledgment. The author acknowledges the College of Science and the Department of Chemistry at Oregon State University for financial support of this research.

Supporting Information Available: Instrumental setup and optode fabrication. This material is available free of charge via the Internet at http://pubs.acs.org.

References


JA062339C
Supporting Information For:

Photoresponsive Ion-Selective Optical Sensor

Alexey Shvarev*

Department of Chemistry, Oregon State University, 153 Gilbert Hal, Corvallis, Oregon, 97331

E-mail: Alexey.Shvarev@oregonstate.edu

Experimental Details

Reagents. High molecular weight poly(vinyl chloride) (PVC), bis(2-ethylhexyl)sebacate (DOS), sodium ionophore (tert-butyl calix[4]arene-tetraacetic acid tetraethyl ester), chromoionophore ETH 5294 (3-Octadecanoylimino-7-(diethy lamino)-1,2-benzophenoxazine), sodium tetrakis-(4-chlorophenyl)borate, 2,4-bis(trichloromethyl)-6-(4-methoxy styryl)-1,3,5-triazine, tetrahydrofuran (THF), TRIS, hydrochloric acid and sodium chloride were purchased from Fluka (Milwaukee, WI). Aqueous solutions were prepared with Nanopure-deionized water (18.2 MOhm cm).

Photochemical acid generator (PAG). We employed 2,4-bis(trichloromethyl)-6-(4-methoxystyryl)-1,3,5-triazine (Figure 1) as the photochemical acid generator. This commercially available nonionic photoprecursor releases hydrochloric acid upon irradiation with UV light at 350 nm with high quantum yield (Figure 2).

Optode fabrication. All optode components (total mass of 100 mg) were dissolved in 2 mL of THF. The optode films (ca. 5 µm thick) were prepared by spin-coating of THF solution (100 µL) on a microscope cover glass. The optode matrix contained PVC and DOS 1:2 by weight.

Experimental setup. The custom-made flow cell (similar to VacuCel™ produced by C&L Instruments) was used to hold a microscope cover glass. The pH was measured using pH-meter (Accumet XL-15) with double-junction combination glass pH-electrode.

The experimental setup included an inverted fluorescence microscope (Olympus IX-71) with attached imaging spectrometer (Acton Microspec MS-2150) and PIXIS-512 CCD camera (Princeton Instruments). A fast wavelength switch DG-4 (Sutter Instrument) with 300 W xenon arc lamp equipped with 350 (±25) nm and 550 (±25) nm filters. DG-4 has two mirrors controlled by the galvanometers. External TTL signals can be used to change the mirror positions in order to pass the light through one of four optical filters or to shut it down. Switching between any two wavelengths can be achieved in less than 1.2 ms. A 6% neutral density filter (ND6, Olympus) was used in all optical channels to reduce the light intensity.

A filter cube consisted of 565 nm dichroic mirror and 600 nm long-pass emission filter. The microscope was equipped with 10×/0.40 objective (UPlanSApo, Olympus).

The camera and the spectrometer were controlled by a PC running WinSpec32 software (Princeton Instruments) in slave mode. A custom-programmed microcontroller (PIC, Microchip) was used to control DG-4 and generate triggering signals for the CCD camera.

Figure 1. The structure of 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine.

Figure 2. Photolysis of the photochemical acid generator.

A typical kinetic experiment consisted of a single 1 s UV pulse at 350 nm followed by a fluorescence detection repeated 15 times with 5 s delay. The detection was performed with 110 ms pulse of excitation light (550 nm) with simultaneous triggering of the camera shutter for 100 ms exposure. A program written using LabView allowed the user to set up the experimental timing sequence, load it into the microcontroller, and execute.

Sensor response.

Assuming a 1:1 stoichiometry of the ion-ionophore complex, the theoretical optode response function obeys the following equation:1,2

\[ \alpha_{\text{eff}} = \left( \frac{K_{\text{exch}}^{\alpha}}{1 - \alpha} \right)^{\frac{1}{1 - \alpha}} \frac{R_T - (1 - \alpha)C_T}{L_T - (R_T - (1 - \alpha)C_T)} \]

where \( K_{\text{exch}}^{\alpha} \) is the ion-exchange constant. Subscripts T denote total concentrations of ionophore (L), ion-exchanger (R), and chromoionophore (C). \( a_{\text{Na}} \) and \( a_{\text{H}} \) are activities of sodium and hydrogen in the aqueous phase, respectively. The mole fraction of unprotonated chromoionophore is expressed as \( \alpha \). The mole fraction of protonated form of the chromoionophore is related to the fluorescence signal as:

\[ 1 - \alpha = \frac{[CH^+]^{\alpha}}{C_T} = 1 - \left( 1 + \frac{F_{\text{max}} - F}{F - F_{\text{min}}} \right) \]

where \( F \) is a fluorescence intensity ratio (at two wavelengths) measured in a given experiment, \( F_{\text{min}} \) and \( F_{\text{max}} \) are the fluorescence...
intensity ratios at the minimum and maximum protonation of the chromoionophore, respectively, $[\text{CH}^{+}]$ is the concentration of the protonated form of the chromoionophore.

