Chemistry 440 Hour exam

EXAM KEY

Department of Chemistry, Oregon State University

21 October 2009

\[R \simeq 8 \, J/(K \cdot mol) \simeq 0.08 \, L \cdot atm/(K \cdot mol) \]

1 bar = 10^5 Pa \simeq 1 atm

\[\Delta U = q_{by} + w_{on} = q_{by} - \int P_{ext} dV \]

\[H = U + PV \]

\[C_v = \left(\frac{\partial U}{\partial T} \right)_V \]

\[C_p = \left(\frac{\partial H}{\partial T} \right)_P \]

\[\mu_{JT} = \left(\frac{\partial T}{\partial P} \right)_H \]

\[\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \]

\[\alpha_P = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P \]

\[P_1V_1^{\gamma} = P_2V_2^{\gamma}, \quad T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1} \quad \text{for an adiabatic process;} \quad \gamma = \frac{C_p}{C_v} \]

\[\frac{1}{1-x} \simeq 1 + x + x^2 + x^3 + \cdots \]

\[Z = \frac{P}{\rho RT} = 1 + B_2\rho + B_3\rho^2 + \cdots \quad \rho = \frac{n}{V} \]
1. Provide the equation(s) and define terms.

 (a) (4 pts) State the First Law of Thermodynamics as it applies to the universe and to a system (two equations).

\[\Delta U_{\text{univ}} = \Delta U_{\text{sys}} + \Delta U_{\text{surr}} = 0 \quad \text{Total energy of the universe is conserved} \]

\[\Delta U_{\text{sys}} = q_{\text{sys}} + w_{\text{sys}} \quad \text{The change in internal energy of the system is the sum of the heat absorbed + work done on the sys.} \]

(b) (2 pts) Define an adiabatic process in terms of the thermodynamic variables of the system (one equation).

\[q_{\text{sys}} = 0 \]

(c) (4 pts) Define the conditions for the critical point of a single component fluid (two equations).

\[\left(\frac{\partial P}{\partial V} \right)_T = \left(\frac{\partial^2 P}{\partial V^2} \right)_T = 0 \quad \text{or} \quad \left(\frac{\partial^2 P}{\partial T \partial V} \right)_T = 0 \]

2. (10 pts) The internal energy per mole \(\bar{U} \) of a model fluid is given by

\[\bar{U}(\rho, T) = \bar{C}_vT - a\rho \quad (1) \]

Derive \(\frac{\partial T}{\partial \rho} \) if \(\bar{C}_v \) and \(a \) are constants.

\[dU = C_v dT - a d\rho = 0 \]

\[\therefore \left(\frac{\partial T}{\partial \rho} \right)_U = \frac{a}{C_v} \]
3. (10 pts) The van der Waals equation, without allowance for attractive forces, is given by

\[P = \frac{nRT}{V - nb} \] (2)

For \(CS_2 \), \(b \approx 0.040 \) L/mole, and its molecular weight is roughly 80 g/mole.

a) If the mass density of liquid carbon disulfide is 1.2 g/mL, what is its molar density in moles/L?

\[
\frac{1.2 \text{ g}}{\text{mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{1 \text{ mole}}{80 \text{ g}} = \frac{1200}{80} = 15 \text{ moles/L}
\]

b) What is the lowest molar density (moles/L) at which Eq(2) fails?

\[
V - nb = 0, \quad \frac{n}{V} = \frac{1}{b} = \frac{1}{0.040 \text{ L/mole}} = 25 \text{ mol/L}
\]

4. (10 pts) A Joule-Thomson coefficient has a value, \(\mu_{JT} = -1.25 \text{ mK/bar} \). Does the temperature increase or decrease and by how much when the pressure drop is 1 kbar?

\[
\mu_{JT} = \left(\frac{\partial T}{\partial P} \right)_H
\]

\[
\Delta T = \mu_{JT} \Delta P
\]

\[
= (-1.25 \text{ mK/bar}) \times (10^3 \text{ bar})
\]

\[
\Delta T = +1.25 \text{ K}
\]

\(T \) increases
5. Consider a fluid whose equation of state obeys

\[P = \rho RT (1 + b\rho) - a\rho^2; \quad \rho = n/V \] (3)

where \(a \) and \(b \) are constant. Derive:

(a) (12 pts) \(B_2(T), B_3(T) \), the second and third virial coefficients, respectively;

\[Z = \frac{P}{\rho RT} = 1 + b\rho - \frac{a\rho}{RT} = 1 + B_2\rho + B_3\rho^2 + \cdots \]

\[B_2 = b - \frac{a}{RT} \]

\[B_3 = 0 \]

(b) (6 pts) and the dependence of \(dU(T, V) \) on \(V \), note

\[\left(\frac{\partial U}{\partial V} \right)_T = T \left(\frac{\partial P}{\partial T} \right)_V - P \] (4)

\[\left(\frac{\partial P}{\partial V} \right)_T = \rho R (1 + b\rho) \]

so

\[\left(\frac{\partial U}{\partial V} \right)_T = \rho RT (1 + b\rho) - \left\{ \rho RT (1 + b\rho) - a\rho^2 \right\} \]

\[= a\rho^2 \]

\[dU = a\rho^2 dV = a\left(\frac{n}{V} \right)^2 dV \]
6. (12 pts) One mole of argon (assumed to be an ideal gas) is compressed reversibly from 1 L to 1 L at 300 K. Calculate ΔU, w_{on} and q_{by}. First, consider an ISOTHERMAL process and second, an ADIABATIC process.

<table>
<thead>
<tr>
<th></th>
<th>ΔU (kJ)</th>
<th>w_{on} (kJ)</th>
<th>q_{by} (kJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) isothermal</td>
<td>0</td>
<td>2.4</td>
<td>-2.4</td>
</tr>
<tr>
<td>(b) adiabatic</td>
<td>$C_V \Delta T$</td>
<td>$C_V \Delta T$</td>
<td>0</td>
</tr>
</tbody>
</table>

\[a) \quad dU = 0 = q_{by} - \int_{V_1}^{V_2} P dV = q_{by} - RT \int_{V_1}^{V_2} \frac{dV}{V} \]

\[W_{by} = -w_{on} = RT \ln \left(\frac{V_2}{V_1} \right) = RT \left[\ln 1 - \ln e \right] = -RT \]

\[q_{by} = W_{by} = -RT \]

\[w_{on} = RT = 8 \frac{J}{K} \cdot 300 K = 2.4 kJ \]

\[b) \quad \Delta U = C_V \Delta T = q_{by} + w_{on} = w_{on} \]

For Ar, $C_V = \frac{3}{2} R$

\[\frac{T_2}{T_1} = \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \quad \gamma \approx \frac{C_P}{C_V} - 1 = \frac{R}{C_V} = \frac{2}{3} \]

\[T_2 = T_1 \cdot \left(\frac{e}{1} \right)^{\frac{2}{3}} \]

\[\Delta T = T_2 - T_1 = T_1 \cdot \left(e^{\frac{2}{3}} - 1 \right) \]

\[C_V \Delta T = \frac{3}{2} RT_1 \left[e^{\frac{2}{3}} - 1 \right] = \frac{3}{2} \cdot 8 \frac{J}{K} \cdot 3000 \cdot \left[e^{\frac{2}{3}} - 1 \right] \]

\[C_V \Delta T = 3.6 kJ \left[e^{\frac{2}{3}} - 1 \right] = w_{on} \]
7. (10 pts) Prove that

\[\alpha_P = \left(\frac{\partial P}{\partial T} \right)_V \kappa_T \]

\[\alpha_P = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \left(\frac{\partial P}{\partial T} \right)_V = \kappa_T \left(\frac{\partial P}{\partial T} \right)_V \]

\text{cyclic rule}

8. (10 pts) Determine if \(dq_{rev} \) is an exact differential for an ideal gas which undergoes a reversible process.

\[dU = C_v \, dT = dq_{rev} - P \, dv \]

\[dq_{rev} = C_v \, dT + P \, dv \]

\[\Rightarrow \left(\frac{\partial C_v}{\partial T} \right)_T = \left(\frac{\partial P}{\partial T} \right)_V = \frac{\partial}{\partial T} \left(\frac{RT}{V} \right) = \frac{R}{V} \]

\[\Rightarrow dq_{rev} \text{ is not exact} \]

9. (10 pts) \(dU(S,V) \) is an exact differential, where \(S \) is the entropy and \(T \) is the absolute temperature. If

\[dU(S,V) = T \, dS - P \, dV \]

then by the condition of exactness

\[\left(\frac{\partial T}{\partial V} \right)_S = - \left(\frac{\partial P}{\partial S} \right)_V \]